SPECIFICATIONS

	Product Name		Multi-layer Chip Ceramic Inductors				
	A-PLUS Part Number		SDCL0402H-01 Series				
	Customer Part Number New Released. Revise						
X			edl	SPEC No.: SI	OCL03150000		
	Rev.	Effective Date	C	Changed Contents	Change reasons	Approved By	
	01	01 /		New release	/		

[This SPEC is total 8 pages including specifications and appendix.]
[RoHS Compliant Parts]

Approved By	Checked By	Issued By

A-PLUS POWER TECHNOLOGY CO., LTD.

【For Customer approval Only】 Date: Qualification Status: ☐ Full ☐ Restricted ☐ Rejected									
Approved By	Verified By	Re-checked By Checked By							
Comments:									
Comments:									

1. Scope

This specification applies to SDCL0402H-01 series of multi-layer ceramic chip inductors.

2. Product Description and Identification (Part Number)

1) Description

SDCL0402H-01 series of multi-layer ceramic chip inductors.

2) Product Identification (Part Number)

SDCL	0402	<u>H</u>	XXX		0	01
1	2	3	4	(5)	6	(7

1)	Туре
SDCL	Ceramic Chip Inductor

3	Applications and Characteristics Code				
	Q				

5	InductanceTolerance
B、C、S	±0.1、±0.2、±0.3nH
G、H、J	±2%、±3%、±5%

6	Packing
Т	Tape Carrier Package

② External	Dimensions (L X W) (mm)
0402 [01005]	0.4 X 0.2

4	Nominal Inductance				
Example		Nominal Value			
3N9		3.9nH			
10N		10nH			

7	7 Serial Code	
	01	

3. Electrical Characteristics

Please refer to Appendix A (Page8).

- 1) Operating and storage temperature range (individual chip without packing): -55 $^{\circ}$ C ~ +125 $^{\circ}$ C,
- 2) Storage temperature range (packaging conditions): -10 $^{\circ}\text{C}$ ~+40 $^{\circ}\text{C}$ and RH 70% (Max.)

4. Shape and Dimensions

- 1) Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table4-1.
- 2) Structure: See Fig. 4-3 and Fig. 4-4.

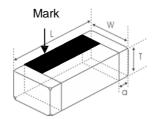


Fig. 4-1

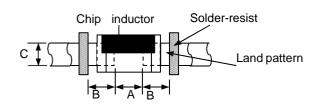
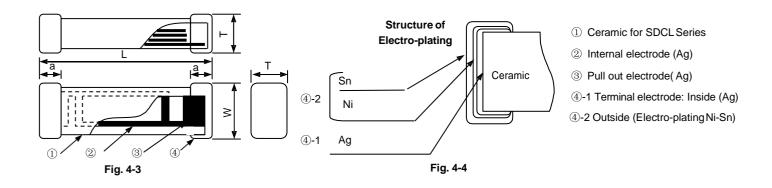



Fig. 4-2

[Table 4-1]						Uni	it: mm [inch]
Туре	L	W	Т	а	Α	В	С
0402 [01005]	0.4±0.02 [.016±.0008]	0.2±0.02 [.008±.0008]	0.2±0.02 [.008±.0008]	0.08±0.025 [.003±.0010]	0.15~0.19	0.18~0.22	0.18~0.22

Material Information: See Table 4-2

[Table 4-2]

Code	Part Name	Material Name					
1	Ceramic Body	Ceramic Powder					
2	Inner Coils	Silver Paste					
3	Pull-out Electrode (Ag)	Silver Paste					
4 -1	Terminal Electrode: Inside Ag	Termination Silver Composition					
4 -2	Electro-Plating: Ni/Sn plating	Plating Chemicals					

4) Soldering Notice: The surface with the mark should be on the top side when soldering, but it is not necessary to identify the mark's direction towards left or right.

. Test and Measurement Procedures

Test Conditions

Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

- a. Ambient Temperature: 20±15℃
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86 KPa to 106 KPa

If any doubt on the results, measurements/tests should be made within the following limits:

- a. Ambient Temperature: 20±2°C
- b. Relative Humidity: 65±5%
- c. Air Pressure: 86KPa to 106 KPa

Visual Examination

a. Inspection Equipment: 60 X magnifier

Electrical Test

DC Resistance (DCR)

- a. Refer to Appendix A.
- b. Test equipment (Analyzer): High Accuracy Milliohmmeter-HP4338B or equivalent.

Inductance (L)

- a. Refer to Appendix A.
- b. Test equipment: High Accuracy RF Impedance /Material Analyzer-E4991A+16196D or equivalent.
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Appendix A.
- e. Short bar residual inductance=0.11nH

Q Factor (Q)

- a. Refer to Appendix A.
- b. Test equipment: High Accuracy RF Impedance /Material Analyzer-E4991A+16196D or equivalent.
- c. Test signal: -20dBm or 50mV
- d. Test frequency refers to Appendix A.

Self-Resonant Frequency (SRF)

- a. Refer to Appendix A.
- b. Test equipment: Agilent 8719ES or equivalent.
- c. Test signal: -20 dBm or 50 mV

Rated Current

- a. Refer to Appendix A.
- b. Test equipment (see Fig. 5.3.5-1): Electric Power, Electric current meter, Thermometer.
- c. Measurement method (see Fig. 5.3.5-1):
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of chip surface.
 - 3. Gradually increase voltage and measure chip temperature for corresponding current.
- d. Definition of Rated Current(Ir): Ir is direct electric current as chip surface temperature rose just 20[°]C against chip initial surface temperature(Ta) (see Fig. 5.3.5-2).

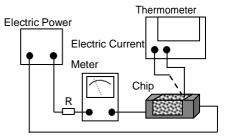


Fig. 5.3.5-1

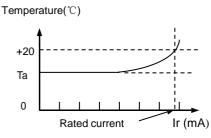


Fig. 5.3.5-2

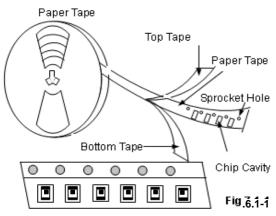
5.4 Reliability Test

Items	Requirements	Test Methods and Remarks					
5.4.1 Terminal Strength	No removal or split of the termination or other defects shall occur. Chip Mounting Pad Glass Epoxy Board Fig.5.4.1-1	 Solder the inductor to the testing jig (glass epoxy board shown in Fig. 5.4.1-1) using leadfree solder. Then apply a force in the direction of the arrow. 1.5N force for SDCL0402H-01 series. Keep time: 10±1s Speed: 1.0mm/s. 					
5.4.2 Resistance to Flexure	No visible mechanical damage. Unit: mm [inch] Type a b c 0402[01005] 0.18 0.8 0.2	 Solder the inductor to the test jig (glass epoxy board shown in Fig. 5.4.2-1) Using a leadfree solder. Then apply a force in the direction shown Fig. 5.4.2-2. Flexure: 2mm. Pressurizing Speed: 0.5mm/sec. Keep time: 30 sec. 					
	© 04.5	Flexure 45[1.772] 45[1.772] Flexure					
5.4.3 Vibration	No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. Cu pad Solder mask Glass Epoxy Board Fig. 5.4.3-1	 Solder the inductor to the testing jig (glass epoxy board shown in Fig. 5.4.3-1) using lead free solder. The inductor shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions (total of 6 hours). 					
5.4.4 Dropping	 No visible mechanical damage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	Drop chip inductor 10 times on a concrete floor from a height of 100 cm.					
5.4.5 Temperature	Inductance change should be within ±10% of initial value measuring at 20°C.	Temperature range: SDCL0402H-01: -55℃ to +125℃, Reference temperature: +20℃					
5.4.6 Solderability	No visible mechanical damage. Wetting shall exceed 95% coverage.	 Solder temperture:240±2°C Duration: 3 sec. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight. 					
5.4.7 Resistance to Soldering Heat	 No visible mechanical damage. Wetting shall exceed 75% coverage. Inductance change: Within ±10%. Q factor change: Within ±20%. 	 Solder temperature: 260±3°C Duration: 5 sec. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight. The chip shall be stabilized at normal condition for 1~2 hours before measuring. 					

A-I LUU	openioanerie iei ma	iti-layer Chip Ceraniic inductors				
5.4.8	No mechanical damage.	① Temperature, Time: (See Fig. 5.4.8-1)				
Thermal Shock	② Inductance change: Within ±10%.	SDCL0402H-01: -55℃ for 30±3 min→125℃ for 30±3min,				
	3 Q factor change: Within ±20%.	② Transforming interval: Max. 20 sec.				
		③ Tested cycle: 100 cycles.				
	30 min. 30 min. 125℃	The chip shall be stabilized at normal condition for 1~2 hours				
	Ambient Temperature -55°C Fig. 5.4.8-1 Ambient 20 sec. (max.)	before measuring.				
5.4.9 Resistance	3	① Temperature: -55±2°C,				
		② Duration: 1000 ⁺²⁴ hours.				
to Low	<u> </u>	The chip shall be stabilized at normal condition for 1~2 hours				
Temperature	3 Q factor change: Within ±20%.	before measuring.				
		ů .				
5.4.10 Resistance	No mechanical damage.	① Temperature: 125±2°C,				
to High	② Inductance change: Within ±10%.	② Duration: 1000 ⁺²⁴ hours.				
Temperature	③ Q factor change: Within ±20%.	The chip shall be stabilized at normal condition for 1~2 hours				
		before measuring.				
5.4.11	No visible mechanical damage.	① Temperature: 60±2°C				
Damp Heat	② Inductance change: Within ±10%.	② Humidity: 90% to 95% RH.				
(Steady States)	③ Q factor change: Within ±20%.	3 Duration: 1000 ⁺²⁴ hours.				
		4 The chip shall be stabilized at normal condition for 1~2 hours				
		before measuring.				
5.4.12	No visible mechanical damage.	① Temperature: 60±2℃				
Loading Under	② Inductance change: Within ±10%.	② Humidity: 90% to 95% RH.				
Damp Heat	③ Q factor change: Within ±20%.	③ Duration: 1000 ⁺²⁴ hours.				
		Applied current: Rated current.				
		⑤ The chip shall be stabilized at normal condition for 1~2 hours				
		before measuring.				
5.4.13 Loading at	No visible mechanical damage.	① Temperature: 125±2°C,				
High Temperature	② Inductance change: Within ±10%.	② Duration: 1000 ⁺²⁴ hours.				
(Life Test)	③ Q factor change: Within ±20%.	③ Applied current: Rated current.				
` '		The chip shall be stabilized at normal condition for 1~2 hours				

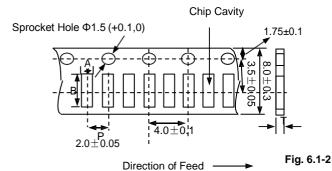
6. Packaging and Storage

Packaging


Tape Carrier Packaging:

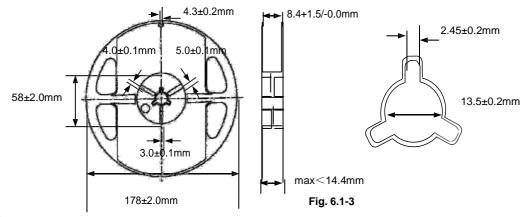
Packaging code: T

- a. Tape carrier packaging are specified in attached figure Fig.6.1-1~3
- b. Tape carrier packaging quantity please see the following table:


Type	0402[01005]				
Thickness (mm)	0.2±0.02				
Tape	Paper Tape				
Quantity	20K				

(1) Taping Drawings (Unit: mm)

Remark: The sprocket holes are to the right as the tape is pulled toward the user.


(2) Taping Dimensions (Unit: mm)

Paper Tape

Type A		В	Р	T max
0402[01005]	0.22±0.05	0.43±0.05	2.0±0.05	0.35

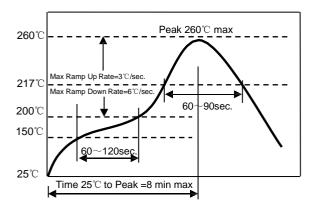
(3) Reel Dimensions (Unit: mm)

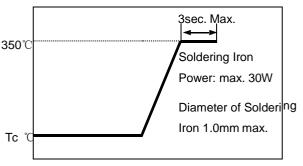
Storage

- a. The solder ability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. Package must be stored at 40°C or less and 70% RH or less.
- b. The solder ability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas (e.g. HCl, sulfurous gas of H₂S).
- c. Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight.
- d. Solder ability specified in **Clause 5.4.6** shall be guaranteed for 6 months from the date of delivery on condition that they are stored at the environment specified in **Clause 3**. For those parts, which passed more than 6 months shall be checked solder-ability before use.

7. Recommended Soldering Technologies

Reflow Profile


- \triangle Preheat condition: 150 ~200 °C/60~120 sec.
- △ Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- \triangle Max time at max temp: 10sec.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Allowed Reflow time: 2x max


[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

Iron Soldering Profile

- \triangle Iron soldering power: Max. 30W
- △ Pre-heating: 150°C/60sec.
- △ Soldering Tip temperature: 350°C Max.
- \triangle Soldering time: 3sec. Max.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Max.1 times for iron soldering

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

- 8. Supplier Information
 - a) Supplier:

A-PLUS POWER TECHNOLOGY CO., LTD.

Appendix A: Electrical Characteristics (SDCL0402H-01 Series) SDCL0402H-01 Series

0402H-01 Series			L, Q Test Freq. L/Q 测试 频率	Typical Q @ Freq. (GHz)				Min.	lin. Max. DC	Max.		
Part Number 型号	Inducta nce 电感量			0.5	0.8	1.8	2.0	2.4	Self-resonant Res	Resistance 直流电阻	Rated Current 额定电流	Thickness 厚度
Units 单位	'nΗ	•	MHz			-			MHz	Ω	mA	mm [inch]
Symbol 符号	L	Q	Freq	Q				S.R.F	DCR	lr	T	
SDCL0402H1N0□T01	1.0	8	500	10	12	19	21	23	11500	0.4	220	
SDCL0402H1N3□T01	1.3	8	500	10	12	19	21	23	11500	0.4	220	
SDCL0402H1N6□T01	1.6	8	500	10	12	19	21	23	11500	0.4	220	
SDCL0402H2N2□T01	2.2	8	500	9.5	11	18	20	22	7500	0.5	200	
SDCL0402H2N4□T01	2.4	8	500	9.5	11	18	20	22	7500	0.5	200	
SDCL0402H2N5□T01	2.5	8	500	9.5	11	18	20	22	7500	0.6	200	
SDCL0402H3N0□T01	3.0	8	500	9	11	19	20	22	7500	8.0	200	
SDCL0402H3N3□T01	3.3	8	500	9	11	18	20	22	7500	0.8	180	
SDCL0402H3N9□T01	3.9	8	500	9	11	18	19	21	7500	1.0	180	0.2.0.02
SDCL0402H4N7□T01	4.7	8	500	9	11	19	20	22	6500	1.2	160	0.2±0.02 [.008±.0008]
SDCL0402H5N1 □T01	5.1	8	500	9	11	18	19	20	6500	1.3	160	[.000±.0000]
SDCL0402H5N6□T01	5.6	8	500	10	12	17	22	24	6000	1.5	140	
SDCL0402H6N8□T01	6.8	8	500	10	11	16	20	23	5500	1.8	140	
SDCL0402H7N5□T01	7.5	8	500	10	13	17	22	24	4500	1.8	140	
SDCL0402H8N2□T01	8.2	8	500	10	12	16	20	21	4500	2.0	140	
SDCL0402H9N1□T01	9.1	8	500	10	13	17	21	23	4000	2.0	140	
SDCL0402H15N□T01	12	7	500	8	12	16	15	14	4000	3.0	140	
SDCL0402H16N□T01	16	7	500	8	11	13	12	11	2500	3.2	140	
SDCL0402H18N□T01	18	7	500	7.5	10	11	10	9	2500	3.2	140	

Note: \Box : Please specify the inductance tolerance. For L \leq 4.2nH, choose B=±0.1nH, C=±0.2nH or S=±0.3nH; For 4.2nH<L<5.6nH, choose, H=±3%, J=±5%. or S=±0.3nH; For L \geq 5.6nH, choose, H=±3%, J=±5%